A note on a graph related to the comaximal ideal graph of a commutative ring
Authors
Abstract:
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is the Jacobson radical of R and distinct vertices I1, I2are adjacent in mathcal{G}(R) if and only if I1∩ I2 = I1I2. The aim of this article is to study the interplay between the graph-theoretic properties of mathcal{G}(R) and the ring-theoretic properties of R.
similar resources
Some results on a supergraph of the comaximal ideal graph of a commutative ring
Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...
full textA Note on a graph associated to a commutative ring
The rings considered in this article are commutative with identity. This article is motivated by the work on comaximal graphs of rings. In this article, with any ring $R$, we associate an undirected graph denoted by $G(R)$, whose vertex set is the set of all elements of $R$ and distinct vertices $x,y$ are joined by an edge in $G(R)$ if and only if $Rxcap Ry = Rxy$. In Section 2 of this articl...
full textsome properties of comaximal ideal graph of a commutative ring
let $r$ be a commutative ring with identity. we use $varphi (r)$ to denote the comaximal ideal graph. the vertices of $varphi (r)$ are proper ideals of r which are not contained in the jacobson radical of $r$, and two vertices $i$ and $j$ are adjacent if and only if $i + j = r$. in this paper we show some properties of this graph together with planarity of line graph assoc...
full textThe annihilator-inclusion Ideal graph of a commutative ring
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...
full textThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
full textA graph associated to spectrum of a commutative ring
Let $R$ be a commutative ring. In this paper, by using algebraic properties of $R$, we study the Hase digraph of prime ideals of $R$.
full textMy Resources
Journal title
volume 4 issue 1
pages 57- 76
publication date 2018-04-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023